Pascal published a treatise on binomial coefficient . 帕斯克发表了关于二项系数的论文。
The binomial coefficients are ubiquitous in combinational theory . 二项系数在组合论中有普遍的应用。
Prove that no four consecutive binomial coefficients can be in arithmetic progression . 证明不存在四个连续的二项系数成算术级数。
On a special binomial coefficient 一个特殊的二项系数
The solutions of the high step binomial coefficient type linear differential equation 高阶二项式系数型线性微分方程
Binomial coefficient series 二项式系数的级数
Furthermore , the modern researches on the identities are investigated which are derived from the binomial coefficients , inversion relations and partition polynomials 同时从二项式公式、反演公式及分拆公式三个角度论述了近现代对组合恒等式的寻求和证明。
We establish a class of combinatorial identity involving two sequences and a partial sum of the binomial coefficients , which contain a lot of new and curious combinatorial identities as its special cases 建立一类包含序列与二项系数部分和的组合恒等式,得到许多新的奇异的组合恒等式。